SOMMA ALGEBRICA DI POLINOMI

SOMMA ALGEBRICA DI POLINOMI

Per fare la somma o la sottrazione tra due polinomi è sufficiente scrivere i polinomi uno di seguito all’altro,racchiusi tra parentesi e interponendo il segno positivo (se è somma) o negativo (se parliamo di sottrazione).

Esempio di somma: (x+2y)+ (3x-y)→ricordiamoci le regole dei segni    →

(+)∙(+)=+      (+)∙(-)= –            (-)(-)=+         (-)(+)= –

X+2y+3x-y=4x+y

Esempio di sottrazione   (a2+1)-(a-2)=

a2+1-a+2= a2-a+3

 

 

 

PRODOTTO DI UN MONOMIO PER UN POLINOMIO

NEL CASO IN CUI CI TROVIAMO DI FRONTE AL PRODOTTO DI  UN MONOMIO  PER UN POLINOMIO, BASTA MOLTIPLICARE QUEL MONOMIO PER TUTTI I TERMINI DEL POLINOMIO: OSSIA APPLICARE LA PROPRIETA’ DISTRIBUTIVA. CON UN ESEMPIO IL CONCETTO E’ MOLTO SEMPLICE.(BISOGNA RICORDARSI NECESSARIAMENTE LE PROPRIETA’ DELLE POTENZE).

ESEMPIO: XY(X2+Y2-X)=     APPLICO LA PROPRIETA’ DISTRIBUTIVA E OTTENGO

XY∙X2     +     XY∙Y2     –   XY∙X=

↓                   ↓

X1+2Y   +      XY1+2   –   X1+1Y=   proprietà delle potenze(basi uguali=si sommano gliesponenti)    QUINDI SI HA

X3Y+XY3– X2Y→QUESTO E’ IL RISULTATO

QUOZIENTE TRA UN POLINOMIO E UN MONOMIO

Il discorso è analogo a quello esposto sopra, ossia si applica la proprietà distributiva e bisogna applicare le regole delle potenze.

1)Esempio:(8a3-12a2+24a4):4 =   applico la proprietà distributiva e ottengo

(8a3): 4 – (12a2): 4+(24a4):4= Ricordatevi che la divisione avviene sia per i numeri che per le lettere. In questo caso si dividono solo i numeri

2a3-3a2 +6a4 →Risultato

 

2)Esempio : (12a4b6– 16a8b4):(-4a2b2)= proprietà distributiva

=(12a4b6):(-4a2b2)+(-16a8b4):(-4a2b2)= proprietà delle potenze: divisione con basi uguali gli esponenti si sottraggono

↓                                           ↓

= -3a4-2b6-2          +             4a8-2b4-2=

=-3a2b4+ 4a6b2→Risultato

Prodotto tra polinomi

Qualora ci troviamo di fronte al prodotto di due polinomio , si applica la proprietà distributiva ripetutamente, ossia moltiplicare ogni termine del primo polinomio per tutti i termini del secondo polinomio. Dopo aver effettuato le moltiplicazioni, si sommano quelli simili(se ci sono!).

Esempio (x+y)∙(a+b)=

x∙a +x∙b +y∙a+ y∙b=

=xa+xb+ya+yb→ Risultato

/ 5
Grazie per aver votato!

Privacy Policy

Cookie Policy