Gas ideali

Gas ideali

Legge di Boyle

FONTE:https://digilander.libero.it/danilo.mauro/index.html


Quando abbiamo studiato la fluidostatica abbiamo introdotto il concetto di pressione. La pressione p è data dalla forza F che si esercita su una certa superficie divisa per l’area A di tale superficie. In questa sezione vogliamo studiare l’equilibrio dei gas e la pressione risulta essere una delle grandezze fondamentali in termini delle quali descrivere il comportamento di un gas ideale. Infatti quando le molecole del gas urtano contro le pareti del recipiente che le contiene esercitano una forza ed è questa forza che determina la pressione del gas.

Il volume V del gas invece coincide con il volume del recipiente che contiene il gas, dal momento che i gas non sono dotati di volume proprio. Accanto alla pressione p e al volume V, altre grandezze fisiche che caratterizzano un gas sono la temperatura T e la quantità di gas che indicheremo con il simbolo n. La mole, unità di misura fondamentale del Sistema Internazionale, è stata definita nel 1971 dal Comitato Internazionale dei Pesi e delle Misure come la quantità di sostanza di un sistema che contiene tante entità elementari quanti atomi sono contenuti in 0.012 kg di carbonio-12. In particolare, 1 mole corrisponde a 6.02 · 1023 molecole.

Quando un gas è in equilibrio la pressione p, il volume V, la temperatura T e la quantità di gas n non sono tutte grandezze fisiche indipendenti ma sono legate tra loro da certe relazioni che andremo ora ad esaminare in dettaglio.

Cominciamo con l’analizzare una trasformazione che avviene a temperatura T costante e a n costante. Se andiamo a comprimere il gas, riducendo il suo volume V, aumentano gli urti delle molecole con le pareti e conseguentemente aumenta la forza e la pressione esercitata dalle molecole sulle pareti. In questo caso la pressione p e il volume V del gas non sono grandezze indipendenti ma sono legate tra loro dalla relazione p · V = costante. Questa legge prende il nome di legge di Boyle. Pressione e volume a temperatura costante sono inversamente proporzionali: se raddoppiamo (triplichiamo) una delle due grandezze fisiche, l’altra si dimezza (diventa uguale a 1 / 3). Dal momento che nel Sistema Internazionale la pressione p si misura in N / m2 e il volume in m3, la costante che compare nella legge di Boyle si misura in N / m2 · m3 = N · m = J, ossia in joule.

Supponiamo invece di considerare un gas a pressione p e temperatura T fissate. Vale in questo caso la legge di Avogadro: una mole di gas occupa lo stesso volume, qualunque sia il tipo di gas che prendiamo in considerazione. Ad esempio, una mole di gas alla pressione di p = 1 atm e alla temperatura T = 0°C occupa un volume V = 22.4 l = 22.4 dm3. È interessante osservare come questa proprietà sia totalmente indipendente dalla massa del gas: una mole di elio ha una massa di 4 g, una mole di ossigeno avrà invece una massa di 32 g. Ciò nonostante, entrambi i campioni di gas a 1 atm di pressione e a 0°C di temperatura occupano un volume di 22.4 l: tutte le leggi sui gas ideali dipendono dalla quantità di sostanza, intesa come numero di moli del gas, non dalla massa del campione

/ 5
Grazie per aver votato!